

SCIENCE AND FOR EDUCATION FOR SUSTAINABLE LIFE

Sensormätningar i vall Sensor measurements for forages

David Parsons & Julien Morel NJV department, SLU

1. A very short introduction to remote sensing

2. Sensing in leys

- a) Field spectrometers
- b) Image analysis for clover content
- c) Satellites
- 3. Assessing variety trials

A very short introduction to remote sensing

1. Basics of remote sensing

- A: light source
- B: light atmosphere interaction
- C: light target interaction
- D: reflected light is recorded by a sensor

Light spectrum

© Bordin photographic

Leaf spectrum

VIS Visible Pigment content

NIR *Near infrared* Structure of leaf/canopy

SWIR Short-wave infrared Water and protein content

Estimating quality traits with field spectrometers

Image: ICAR

Field Spectrometers

- Measure reflectance
- Non-imaging
- Passive or active light source
- Usually tractor-mounted or handheld

Research-grade field spectrometers

- e.g. Fieldspec 4.
- Detailed spectral information
- Expensive

Classic Yara N-sensor

Video: SLU

- Three years (2017-2019)
- Four sites (Lännäs, Röbäcksdalen, Ås, Öjebyn)
- Mixtures of timothy and red clover
- 337 samples

Variable	Cal. r ²	Val. r ²
СР	0.63	0.50
Digestibility	0.73	0.64
NDF	0.86	0.77
NDF Digestibility	0.77	0.65

Outlook

- Testing models on larger datasets
- Other parts of Sweden
- Reliable models for different years, sites, equipment
- Testing low-cost spectrometers

Estimating clover content from RGB images

E-FAST Clover

- Three years (2017-2019)
- Four sites
- Mixtures of timothy and red clover
- iPhone images
- 347 samples and images collected
- 96 used to test the models
- Manual labelling of clover pixels

Source: Sun et al. 2021. https://doi.org/10.3389/fpls.2021.622429

Clover content

- Three different "transfer learning" models
- All had r² around 0.96

Source: Sun et al. 2021. https://doi.org/10.3389/fpls.2021.622429

2D clover content

3D botanical composition

Botanical composition

- Combined clover content with measurements of plant height
- Slightly better results when plant height used

Outlook

- Drones
 - Use lightweight & low cost drones to scout fields e.g. Mavic Mini (249g)
 - Repeatable height above ground
 - Testing algorithms on drone images
- Robots
 - Partnership with LTU
 - Very early stages

Estimating quality traits from satellite imagery

Sentinel 2

- Constellations of earth observation satellites managed by ESA
- Free access for anybody
- Sentinel-2 satellites
 - 2 satellites
 - 10 m of pixel size
 - ~1 image every 2 days
 - 13 spectral bands (visible, NIR, SWIR)

Data

- Röbäcksdalen data collection
- Vallprognos
 - Two years (2020-2021)
 - >30 sites across Sweden
 - Range of ley conditions
 - 72 used for analysis

Image: Google/SLU

Crude Protein

Neutral Detergent Fibre

Outlook

- Preliminary results are encouraging
- (much) more work is needed
- If results are confirmed, the models could be adapted into a practical tool similar to cropsat.se (in ~3 years)

Image: Julien Morel

Using drones for assessment of field experiment

Overview

- Parameters of interest
 - Plant cover (easy)
 - Plant density (medium)
 - Biomass (medium)
 - Forage quality (hard)
- Advantages
 - Fast
 - Objective
 - Within plot variability

Normalized difference red edge index (Matrice + MAIA S2)

Contact @ NJV

Julien Moreljulien.morel@slu.seJunxiang Pengjunxiang.peng@slu.seDavid Parsonsdavid.parsons@slu.se

Acknowledgments

We thank the staff from the field station for support "eFast" project was funded by RJN and SLF "Vallsat" project was funded by RJN and SLF "Vall-scanner" project, funded by Ag-Tech Challenge "Vall-Optimal project" funded by Werner Stiftelse "R2D2" project was funded by Lantmännen Stiftelse "Robots on grass" project funded by RJN & NorrlandsNavet

