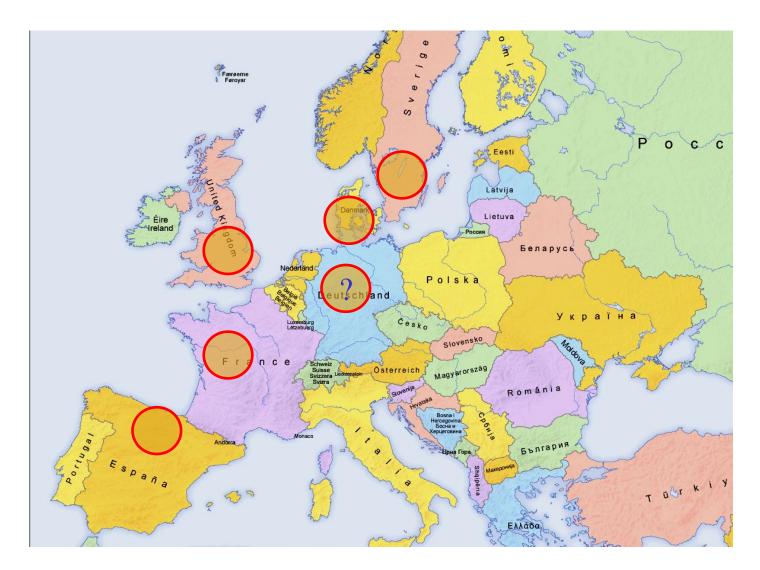
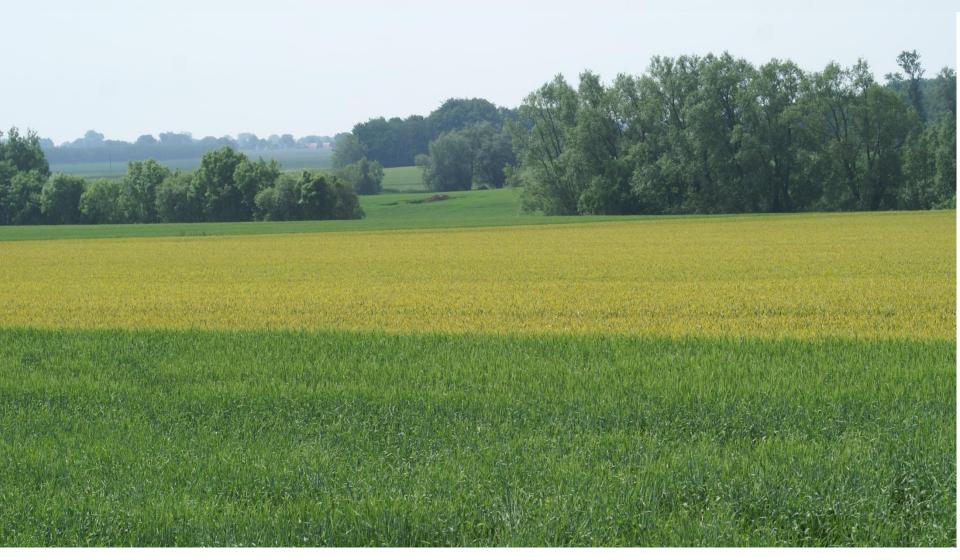
Hvedegulrust: Virulens og resistens i svenske sorter 2011-2012

Växtskydds- och växtodlingskonferensen i Linköping, Konsert & Kongress, 29 nov. 2012

Mogens S Hovmøller , Aarhus Universitet, Global Rust Reference Center, Flakkebjerg mogens.hovmoller@agrsci.dk


Outline

- Current Yellow rust epidemic situation in Europe and in DK/S recent years
- Corresponding virulence (race) distribution
- Swedish wheat varieties: YR susceptibility to recent races in inoculated field trials
- International networks and collaboration
- New wheat rust research initiatives


European countries with widespread YR epidemics in 2012/ high yield responses to fungicide control

Yellow rust epidemic, Sweden 2011

Yellow rust epidemic situation in Sweden and Denmark 2009-12: **Triticale**

· 2009-10

- Sweden & Denmark: Severe epidemics and losses of 50-100% typical for organic growers in DK
- New aggressive race was recovered from most triticale epidemic sites – many triticale varieties remained resistant, no winter wheat varieties affected by this race, but several spring wheats susceptible

· 2011

- Susceptible varieties generally replaced by resistant varieties (e.g., Tulus), few epidemics in 'old' varieties

· 2012

- March-April: High incidence of YR in Tulus and other triticale varieties, many sites in Denmark
- May-July: Epidemics did not evolve in most varieties

Yellow rust epidemic situation in Sweden and Denmark 2009-12: Winter wheat

· 2009-10

- <u>Sweden</u>: Epidemics in 'Tulsa' and other susceptible varieties
- Denmark: Low disease incidence, in 2010 no yellow rust recorded in farmers fields

· 2011

- <u>Sweden</u>: Widespread and severe epidemics, e.g., in Tulsa, Audi, Kranich and others
- Denmark: Epidemics in few varieites, e.g., Ambition
- November-December: high disease incidence in many varieties

• 2012

- <u>Sweden</u>: Widespread and severe epidemics in many varieties
- <u>Denmark</u>: Widespread and severe epidemics in several varieties, but widely grown varieties: Mariboss, Hereford, Jensen and others, remained resistant at adult plant stage

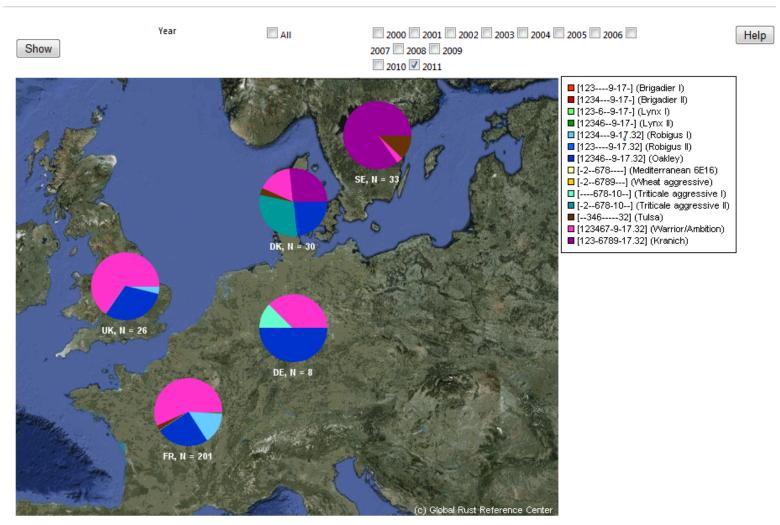
March 2012, Zealand: Triticale (cv. Tulus) infected in many commercial fields

Telia production on infected wheat – June 2012

Number of Pst samples, Sweden 2011-2012

	2011		2012	
Location	Failure	recovery	Failure	recovery
Borrby		1		
Asmundtorp		1		
Borgholm, Öland	1			
Borrby	4	12		
Fjãlkinge				2
Furelund	4	8		
Gavle				1
Gärdstösa, Øland				1
Hossmo, Kalmar			1	2
Kalmar	3			1
Klagstorp	4	5		
Korskrog			1	
Kuddby			1	
Kulltorp, Kalmar				1
Laholm/Halland			1	1
Linköbing	1		3	2
Lundelm			3	
Mjölby		1	1	
Munga			1	
Norrköping		3		1
Ônnestad			4	2
Ôstra Stenby			1	
Renstad				1

36	48	37	32
36	48	37	32
		7	6
	1		
			1
			2
		1	
			1
4	4		
			2
			1
1			
2	2		
		3	
1			
1	2		
2			
	2		
		1	
		2	
		1	
		1	
		1	
	1	2	4
	2		
8	1		
	1		
	2 1 1 4	2 1 2 2 1 2 1 2 1 4 4 4 4	8 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1

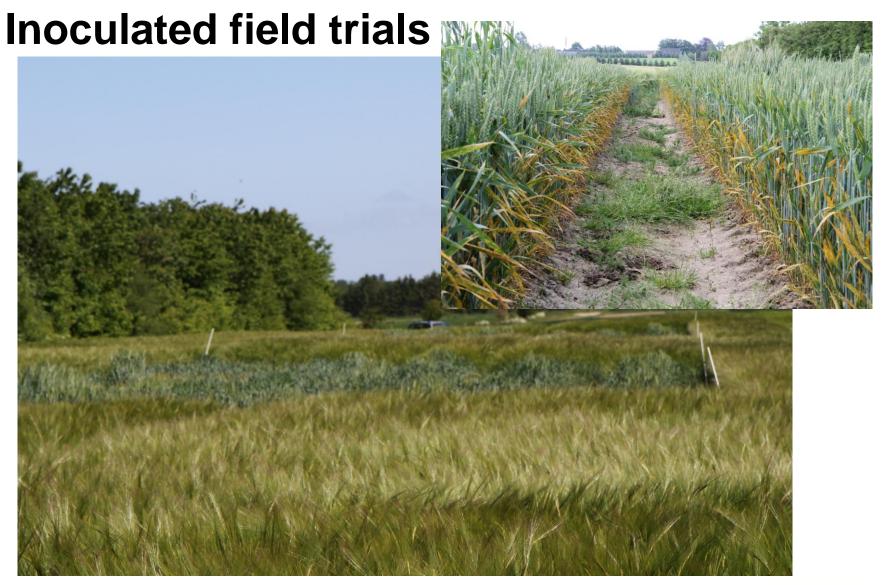

P. striiformis pathotypes detected in Denmark and Sweden 2011-2012; number of isolates

			2010-11 season	201	.1-12 sea	son	Total
Country	Pathotype code	Common name	autumn summer	autumn	spring	summer	
Denmark	-,(2),-,-,-,6,7,8,-,10,-,-,*,-,-,*,-,*,-,-,-	Triticale aggressive	9			2	11
	-,-,3,4,-,6,-,-,-,-,-,25,-,32,Sd,Su,-,An,Avs,-	Tulsa	1				1
	1,2,3,-,-,6,-,-,9,-,-,17,-,25,-,-,Sd,-,-,An,AvS,-	Lynx				1	1
	1,2,3,4,-,6,-,-,9,-,-,17,-,25,-,-,Sd,Su,-,An,AvS,-	Lynx variant				1	1
	1,2,3,4,-,6,-,-,9,-,-,17,-,25,-,32,Sd,Su,-,An,AvS,-	Oakley	7			4	11
	1,2,3,-,-,6,-,-,9,-,-,17,-,25,-,32,Sd,-,-,An,AvS,-	Oakley variant	2				2
	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sd,Su,Sp,An,AvS,-	?				1	1
	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sd,Su,Sp,An,AvS,Amb	Ambition/Warrior	5			2	7
	1,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,Sd,-,-,An,AvS,Amb	Kranich	5	3	9	19	36
Denmark 1	Total Total		29	3	9	30	71
Sweden	-,(2),-,-,-,6,7,8,-,10,-,-,*,-,-,*,-,*,-,-,-	Triticale aggressive				4	4
	-,-,3,4,-,6,-,-,-,-,-,25,-,32,Sd,Su,-,An,Avs,-	Tulsa	2	2			4
	1,-,3,4,-,6,-,-,-,-,25,-,32,Sd,Su,-,An,AvS,-	Tulsa variant	1				1
	1,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,Sd,-,-,An,AvS,Amb	Kranich	18	10		4	32
	1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sd,Su,Sp,An,AvS,Amb	Ambition/Warrior	1			1	2
Sweden To	otal		22	12		9	43
Grand tota	I		51	15	9	39	114

PATHOTYPE BY YEAR MAP

Data provided by: Institut National de la Recherche Agronomique (France), Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (Germany and Austria), National Institute of Agricultural Botany (United Kingdom) and Aarhus University (Denmark and Sweden)

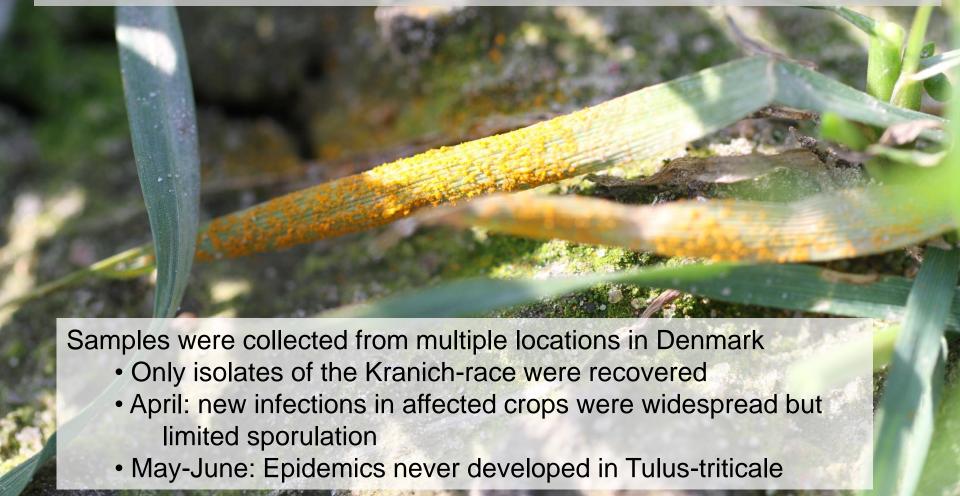
	Common name of		2010-11 season	2011-12 season	Total
Pathotype code	race	Host variety	autumn summer	autumn summer	
-,(2),-,-,-,6,7,8,-,10,-,-,*,-,-,*,-,*,-,*,-,-	Triticale aggressive	Cando		2	2
		Dinaro		2	2
-,-,3,4,-,6,-,-,-,-,-,25,-,32,Sd,Su,-,An,Avs,-	Tulsa	Brons		1	1
		Jensen		1	1
		Kopral	1		1
		Olivin	1		1
1,-,3,4,-,6,-,-,-,-,-,25,-,32,Sd,Su,-,An,AvS,-	Tulsa variant	Akteur	1		1
1,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,Sd,-,-,An,AvS,Amb	Kranich	Akteur	2		2
		Audi	5	1	6
		Boomer		2	2
		Cardos	2		2
		Cubus		1	1
		Cumulus		1	1
		Ellvis		2	2
		Hereford		1	1
		Holeby	1		1
		Kr 99 224		1	1
		Kranich	6	2 1	9
		Loyal		1	1
		Oakley	2		2
		Stava		1	1
1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sd,Su,Sp,An,AvS,Am	Ambition/Warrior	Audi	1		1
		Sequence		1	1
Total			22	12 9	43



P. striiformis pathotypes detected in Sweden 2011-2012; number of isolates

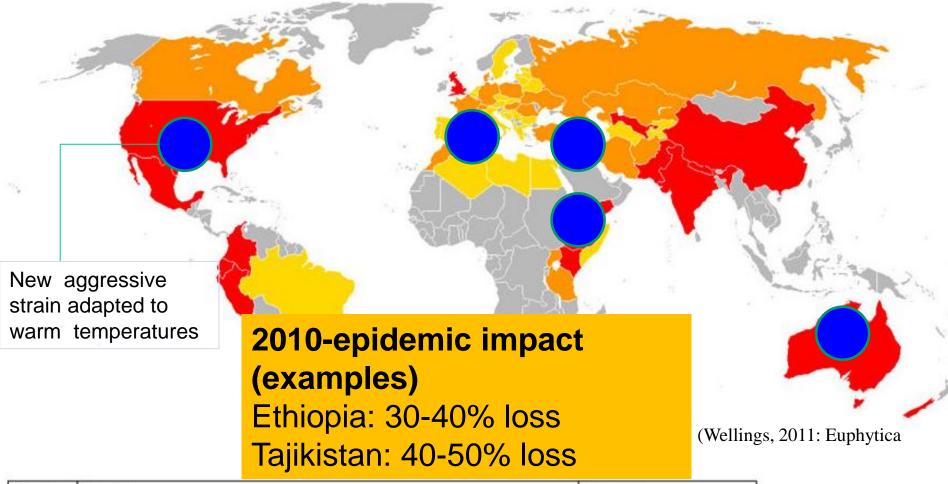
	Common name of		2010-11 s	eason	2011-12	eason	Total
Pathotype code	race	Location	autumn	summer	autumn	summer	
-,(2),-,-,-,6,7,8,-,10,-,-,*,-,-,*,-,*,-,-,-	Triticale aggressive	Hossmo, Kalmar				2	2
		Östra Ryd				2	2
-,-,3,4,-,6,-,-,-,-,-,25,-,32,Sd,Su,-,An,Avs,-	Tulsa	Skurup		1			1
		Skänninge		1			1
		Ängelholm			1	l	1
		Klagstorp			1	L	1
1,-,3,4,-,6,-,-,-,-,-,25,-,32,Sd,Su,-,An,AvS,-	Tulsa variant	Skurup		1			1
1,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,Sd,-,-,An,AvS,Amb	Kranich	Borrby		9	3	3	12
		Asmundtorp		1			1
		Furelund			2	<u>)</u>	2
		Norrköping		3		1	4
		Klagstorp			1	L	1
		Skegrie			1	L	1
		Simrishamn		2			2
		Skänninge				1	1
		Tomelilla		2			2
		Trelleborg		1			1
		Trial station Lönnstorp				1	1
		Vemmenhög			2	2	2
		Ängelholm			1	l	1
		Ödeshög				1	1
1,2,3,4,-,6,7,-,9,-,-,17,-,25,-,32,Sd,Su,Sp,An,AvS,Am	b Ambition/Warrior	Kulltorp, Kalmar				1	1
		Åstorp		1			1
Grand total				22	12	2 9	43

Middel af % severity		Ambition race			Lynx race			Kranich race		
Variety Crop	20 06 42	30-03-12	28-06-12	30-05-12	12-06-12	28-06-12	30-05-12	12-06-12	28-06-12	
Ambition W who	eat DK 20),0 50	,0 50,0	0,2	(4,5)	(15)	15,0	41,7	45,8	
Hereford W who	eat DK 0	,0 0,	1 0,2	0,0	0,0	0,0	0,5	1,3	2,3	
JB Asano W who	eat DK 33	3,3 30	,8 41,7	0,0	2,0	13,3	29,2	29,2	50,0	
Jensen W who	eat DK 0	,2 0,	3 0,3	0,0	0,0	0,0	0,2	0,5	1,0	
Mariboss W who	eat DK 0	,0 0,	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Audi W who	eat Se 20	0,0 45	,8 41,7	0,5	(4,5)	(22,5)	20,0	45,8	58,3	
Beate (SW 57008) W who	eat Se 0	,1 1,	7 2,3	0,0	0,0	0,3	1,7	12,5	9,3	
Boomer W who	eat Se 0	,0 0,	0,3	0,0	0,0	0,2	0,1	2,8	4,0	
Br 8037b26 W who	eat Se 1	,4 3,	7 2,7	0,0	0,0	0,0	4,3	7,5	7,5	
Brons (SW 56884) W who	eat Se 0	,0 0,	2 0,0	0,0	0,0	0,0	0,7	0,4	0,0	
Cumulus W who	eat Se 26	6,7 45	,8 66,7	0,2	3,0	(29,2)	25,0	50,0	66,7	
Ellvis W who	eat Se 0	,0 0,	0,0	0,0	0,0	0,0	0,0	0,0	0,2	
Frontal W who	eat Se 0	,1 4,	3 3,7	0,0	2,3	0,5	1,5	17,5	10,0	
HADM Norin W who	eat Se 0	,5 2,	3 3,0	0,2	0,5	3,7	5,8	11,7	25,0	
HADM Opal W who	eat Se 0	,0 0,	0,3	0,0	0,0	0,3	0,0	0,0	0,0	
Hymack W who	eat Se 0	,2 13	,3 10,0	0,7	10,0	7,0	12,7	33,3	29,2	
Inspiration W who	eat Se 6	,0 6,	7 4,3	2,0	2,2	4,3	7,0	15,0	18,3	
Kerubino W who	eat Se 20	0,0 29	,2 33,3	0,2	1,5	(17,5)	29,2	41,7	50,0	
Kranich W who	eat Se 3	,0 6,	7 3,7	0,0	0,1	4,3	10,8	15,0	20,0	
Loyal W who	eat Se 0	,8 6,	7 4,3	0,0	0,1	4,0	3,7	14,2	12,5	
Nimbus W who		,7 25	,0 20,0	0,0	0,7	4,0	2,3	20,0	20,0	
Olivin W who	eat Se 0	,5 0,	3 0,3	3,7	2,2	0,7	2,3	3,0	11,0	
Opus W who	eat Se 1	,0 3,	0 1,0	0,3	2,0	0,5	1,4	4,3	7,7	
Praktik (RAGT 10 W who		,1 0,		0,7	0,8	0,2	1,7	3,7	2,3	
		,7 15	,0 15,0	2,3	14,2	6,7	5,8	25,0	22,5	
J.J.		,0 0,		0,0	0,0	0,0	0,0	0,0	0,0	
		,4 0,		0,0	0,0	0,2	0,7	1,7	0,7	
		,2 4,		0,0	0,1	1,7	2,3	10,8	11,7	
SW Harnesk W who	eat Se 0	,1 0,	4 0,0	0,0	0,2	0,0	0,3	1,0	1,0	
Average	4	<u>,7 10</u>	2 10,6	0,4	1,4	1,8	6,4	14,1	16,8	



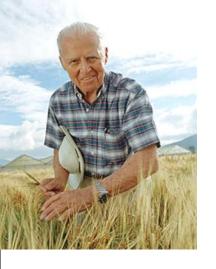
Middel af % severity		Ambition race			Lynx race			Kranich race		
Variety	Crop	30-05-12	12-06-12	28-06-12	30-05-12	12-06-12	28-06-12	30-05-12	12-06-12	28-06-12
BR 1351b2	Triticale	4,3	7,5	20,0	0,0	2,0	3,5	1,7	1,7	6,7
Br 1390a27	Triticale	0,3	2,3	10,0	0,0	0,0	0,7	0,0	0,0	1,0
Empero	Triticale	0,4	3,0	5,0	0,0	0,0	0,3	0,1	0,3	0,3
Gringo	Triticale	1,3	10,0	20,0	0,0	0,5	1,0	0,2	0,5	3,7
MAH 5809	Triticale	1,5	5,2	15,0	0,0	0,2	2,8	0,1	0,7	1,7
Ragtac	Triticale	0,4	3,7	29,2	0,0	0,1	2,3	0,4	1,7	13,3
SW Valentino	Triticale	1,5	3,0	10,0	0,0	0,4	5,0	0,8	1,7	12,5
Tulus	Triticale	0,8	3,7	20,0	0,0	0,0	0,5	0,0	0,0	0,5
Average		1,3	4,8	16,1	0,0	0,4	2,0	0,4	0,8	4,9

March 2012, Zealand: Triticale (cv. Tulus) was infected in many commercial fields


Triticale (cv. Tulus), inoculated by isolates of the Kranich-race, Flakkebjerg, June 12, 2012

Impact of wheat yellow rust globally

Code	Incidence	Severity
	Rare	negligible losses
1	Localised, 2 in 5 years over 25% growing areas	1-5% crop losses
	Widespread 2 or 3 years in 5 over whole production region	5-10% crop losses



The Borlaug Global Rust Initiative Network & Global Rust Reference Center

Tine Thach
Aarhus University October 11, 2012

Projects

Multinational efforts required

- 1. Intensify wheat rust surveillance (early warning)
- 2. Research in the evolution of rust fungi
- 3. Intensify plant breeding
- 4. Capacity building and training of scientists from developing countries
- 5. Rapid dissemination of results via web-based tools

Rapid communication via Net-based solutions: Wheat Rust Toolbox

Jens Grønbech Hansen (2012):

EuroWheat

GRRC

RustTracker

Wheat rust toolbox

XML, CSV

Exchange and integration with external platforms

SQL Databases: CropProblem etc.

> Members Area

UNIVERSITY

GLOBAL RUST REFERENCE CENTER

About GRRC Research Projects International Services

COLLABORATION WITH ICARDA AND CIMMYT

The centre was established in 2008 as a global hub for investigating wheat rust upon the request of the international institutions International Maize and Wheat Improvement Center (CIMMYT), based in Mexico, and International Center for Agricultural Research in the Dry Areas (ICARDA), which is based in Syria. With the

new grant the activities at the reference centre will expand markedly.

An International wheat stripe rust symposium was organised by

RUSTFIGHT - MEETING THE NEW CHALLENGES FROM INFECTIOUS RUST FUNGI ON CROP PLANTS

The Danish Research Council for Strategic Research is contributing 19.8m DKK to a new research project to be led by Aarhus University. The results from the project will bring more knowledge to the prevention and control of wheat rust.

The research will be a collaboration between The Global Rust Reference

Large international grant for research in wheat rust

A sum of 40 m USD has found its way to research to fight wheat stem (black) rust, a serious fungal disease threatening wheat productivity. The grant was awarded by the Bill & Melinda Gates Foundation in the USA and the UK Department for (DFID). A share of the funds will go to scientists from the Department of Integrated Pest Management at Aarhus University to expand activities at the Global Rust Reference Centre (GRRC), which is located at the department in Flakkebjerg near Copenhagen, Denmark.

Read more

The Borlaug Global Rust Initiative

The Borlaug Global Rust Initiative (BGRI), founded by the late Dr. N.E. Borlaug, has the overarching objective of systematically reducing the world's vulnerability to stem, yellow, and leaf rusts of wheat and facilitatingg the evolution of a sustainable international system to contain the threat of wheat rusts and continue the enhancements in productivity required to withstand future global threats

Internet | Beskyttet tilstand: Fra

Home About GRRC Research Projects International Services

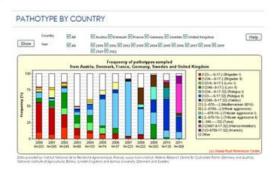
YOU ARE HERE: International Services » Wheat Rust Toolbox » Yellow Rust Europe

International Services

- > Submission of isolates
- > Annual status on pathotyping
- Wheat Rust Toolbox
 - >> Stemrust
 - Yellow Rust Europe
 - > Pathotype by country
 - > Pathotype by year map
- > Publications

YELLOW RUST EUROPE

In Europe new multivirulent strains appeared in at least four NW-European countries in 2011: UK, France, Denmark, Sweden. Several wheat varieties became affected and the new strains seems to be very aggressive based on field observations. It is first time ever recorded in Europe that a single strain emerges at this geographical scale in high frequencies in the same growing season, suggesting large scale long-distance aerial spore dispersal autumn 2010/ spring 2011 from an unknown source


Four PCR-based markers uniquely identifying aggressive strains PstS1/ PstS2 and differentiating these from other known Pst strains are being developed at the Global Rust reference Centre. For isolates collected in Denmark and Sweden, preliminary results suggest that the new strain may be a recombinant involving aggressiveness.

Below is link to different tools that analyse and display information about the historical and current distribution and importance of yellow rust in Europe. Use the link below the Screen dumps or select from the menu to the left.

For further information about epidemiology and control of cereal diseases in Europe see EuroWheat

YELLOW RUST SWEDEN, 2011

Go to this tool

Go to this tool

COMMENTS ON CONTENT: JENS GRØNBECH HANSEN

REVISED 2012.08.24

Go to Global Rust Reference Center frontpage

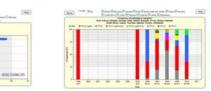
Home About GRRC Research Projects International Services

YOU ARE HERE: International Services » Wheat Rust Toolbox » Stemrust

International Services

- > Submission of isolates
- > Annual status on pathotyping
- Wheat Rust Toolbox
 - Stemrust
 - > Pathotype frequency graph
 - > Pathotype by country
 - > Pathotype by year map
 - > Virulence by Year
 - > Virulence by Country
 - > First appearance of virulences
 - > Surveillance mapping tool
 - > Surveillance data overview
 - > Importance of the three wheat Rusts
 - >> Yellow Rust Europe
- > Publications

STEMRUST


Stem rust on wheat caused by race Ug99 and its variants is currently spreading across Africa, Asia and the Middle East and is causing major concern due to the large numbers of people dependent on wheat for evustanence. The strain was named after the country where it was identified (Uganda) and the year of its discovery (1999). It spread to Kenya, then Etippia, Sudan and Yemen, and is becoming more virulent as it spreads. Scientists are working on breeding strains of wheat that are resistant to UG99. However, wheat is grown in a broad range of environments. This means that breeding programs would have extensive work remaining to get resistance into regionally adopted germplasms even after resistance is identified.

Below is link to different tools that analyse and display information about the historical and current distribution and importance of stem rust, leaf rust and yellow rust - mainly in Africa/Central and West Asia. Use the link below the Screen dumps or select from the menu to the left.

PATHOTYPE FREQUENCY GRAPH

PATHOTYPE BY COUNTRY

Go to this tool

PATHOTYPE BY YEAR MAP

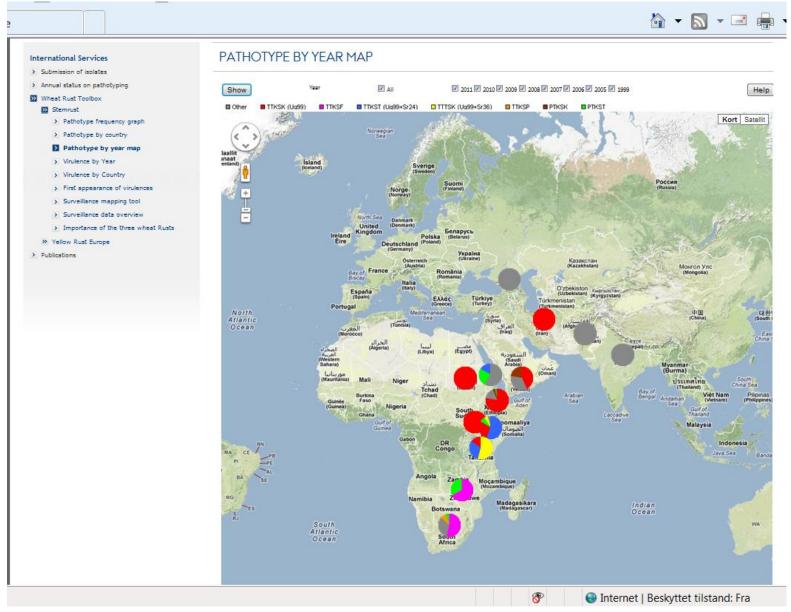
Go to this tool

VIRULENCE BY YEAR MAP

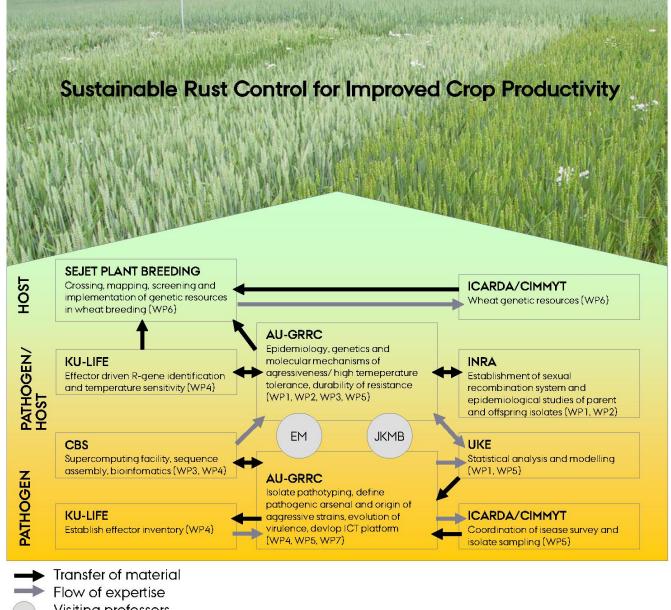
Go to this tool

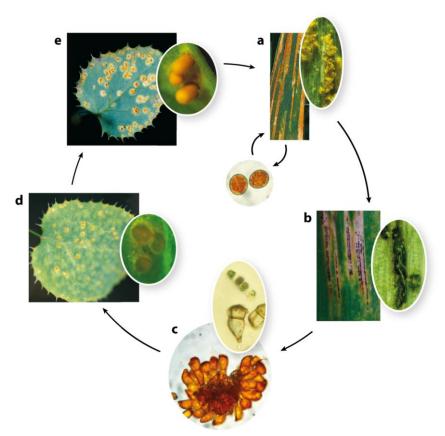
VIRULENCE BY COUNTRY

VIRULENCE FIRST APPEARANCE



Internet | Beskyttet tilstand: Fra





1/2012-2016

Visiting professors

Nyt samarbejde med SLU-Uppsala (Jonathan Yuen)

Phd projekt (2011-14) med fokus på at undersøge, om Berberris vulgaris har betydning for YR epidemiologi i Sverige

Phd stud. Kerstin Gillen

Hovmøller MS, et al. 2011. Annu. Rev. Phytopathol. 49:197–217

Alternate host common in some areas in Europe

Samarbejdaftale med Jordbruksverket fornyet Juni 2012

Avtal

INDGÅET

1 6 JULI 2012

Avtalets namn:

Fusariumarts- och fusariumtoxinanalyser i höstvete, havre och vårvetevårvete, havre, rågvete och korn.
Fusariumanalyser samt virulenstudier på svenska gulrostisolat och smittoförsök med höstvetesorter. Analyser

av Septoria tritici Fusariumarts- och

Upphandling:

fusariumtoxinanalyser i höstvete, havre och vårvetevårvete, havre, rågvete och korn. Fusariumanalyser samt virulenstudier på svenska gulrostisolat och smittoförsök med höstvetesorter. Analyser

av Septoria tritici

Startdatum:

2012-06-15

Typ av avtal:

Avtal

Referensnr:

Dnr 25-2363/12

Upph. ref.nr:

Dnr 25-2363/12

Slutdatum:

2013-06-14

Förlängning:

1 st á 1 år

Parter:

Global Rust Refer	ence Center (January 2012)	6 of working hours 2012
Professor	Mogens Støvring Hovmøller	100
Seniorforsker	Annemarie F. Justesen	75
Post doc	Stephanie Walter (indtil 2016)	100
Post doc 2	NN (fra ultimo 2012)	100
Post doc 3	MM (fra 2013/14)	100
Phd stud.	Chris Sørensen (indtil 31.05.12)	100
Phd stud.	Tine Thach (fra 01.02.2012)	100
Phd stud.	PP (fra medio 2013)	100
Laborant	Ellen Frederiksen	100
Laborant	Sarah Adams	100
Laborant	Anne-Pia Larsen	33
Gartner	Steen Meier	50
AC TAP	Ny fra 1.4.12 (12 mdr)	100
Forsker	Jens Grønbech Hansen/Poul Lassen (Fould	um) 9 months

www.wheatrust.org